بقلم يوفراج شاندرا
يشاركسقسقةبريد الالكتروني

اعثر على المكعبات والمربعات المثالية باستخدام الخوارزميات بلغات متعددة.

يحب العديد من المبرمجين حل المشكلات الرياضية الصعبة باستخدام الكود. يساعد على شحذ العقل وتحسين مهارات حل المشكلات. في هذه المقالة ، ستتعلم كيفية العثور على أصغر وأكبر المربعات والمكعبات الكاملة المكونة من رقم n باستخدام Python و C ++ و JavaScript. يحتوي كل مثال أيضًا على عينة إخراج لعدة قيم مختلفة.

أصغر وأكبر المربعات المثالية المكونة من رقم N

عرض المشكلة

أنت تحصل على عدد صحيح ن، وتحتاج إلى العثور على أصغر وأكبر أعداد مكونة من n والتي تعد أيضًا مربعات كاملة.

مثال 1: دع n = 2

أصغر مربع كامل مكون من رقمين هو 16 وأكبر مربع كامل مكون من رقمين هو 81.

وبالتالي ، يكون الناتج هو:

أصغر مربع كامل مكون من رقمين: 16

أكبر مربع كامل مكون من رقمين: 81

مثال 2: دع ن = 3

أصغر مربع كامل مكون من 3 أرقام هو 100 وأكبر مربع كامل مكون من 3 أرقام هو 961.

وبالتالي ، يكون الناتج هو:

أصغر مربع كامل مكون من 3 أرقام: 100

أكبر مربع كامل مكون من 3 أرقام: 961

instagram viewer

نهج لحل المشكلة

يمكنك العثور على أصغر مربع كامل مكون من رقم n باستخدام الصيغة التالية:

الأسرى (السقف التربيعي (الأسرى (10 ، ن - 1))) ، 2)

ولإيجاد أكبر مربع كامل مكون من رقم n ، استخدم الصيغة التالية:

الأسرى (سقف (قدم مربع (أسرى (10 ، ن))) - 1 ، 2)

برنامج C ++ للعثور على أصغر وأكبر المربعات المثالية المكونة من N

يوجد أدناه برنامج C ++ للعثور على أصغر وأكبر المربعات المثالية المكونة من رقم n:

// C ++ للعثور على أصغر وأكبر
// n-digit مربعات كاملة
#يشمل
استخدام اسم للمحطة؛
العثور على باطل PerfectSquares (int n)
{
cout << "أصغر" << n << "مربع مثالي رقم:" << pow (ceil (sqrt (pow (10، n - 1))))، 2) << endl؛
cout << "أكبر" << n << "مربع مثالي رقم:" << pow (ceil (sqrt (pow (10، n))) - 1، 2) << endl؛
}
انت مين()
{
int n1 = 1 ؛
cout << "عدد الأرقام:" << n1 << endl؛
findPerfectSquares (n1) ؛
int n2 = 2 ؛
cout << "عدد الأرقام:" << n2 << endl؛
findPerfectSquares (n2) ؛
int n3 = 3 ؛
cout << "عدد الأرقام:" << n3 << endl؛
findPerfectSquares (n3) ؛
int n4 = 4 ؛
cout << "عدد الأرقام:" << n4 << endl؛
findPerfectSquares (n4) ؛
العودة 0 ؛
}

انتاج |:

عدد الأرقام: 1
أصغر مربع كامل مكون من رقم واحد: 1
أكبر مربع كامل مكون من رقم واحد: 9
عدد الأرقام: 2
أصغر مربع كامل مكون من رقمين: 16
أكبر مربع كامل مكون من رقمين: 81
عدد الأرقام: 3
أصغر مربع كامل مكون من 3 أرقام: 100
أكبر مربع كامل مكون من 3 أرقام: 961
عدد الأرقام: 4
أصغر مربع كامل مكون من 4 أرقام: 1024
أكبر مربع كامل مكون من 4 أرقام: 9801

متعلق ب: كيفية حساب قيمة nCr

برنامج Python للعثور على أصغر وأكبر المربعات المثالية المكونة من N Digit

يوجد أدناه برنامج Python للعثور على أصغر وأكبر المربعات المثالية المكونة من رقم n:

# برنامج بايثون للعثور على أصغر وأكبر
# n من أرقام المربعات الكاملة
استيراد الرياضيات
def findPerfectSquares (n):
print ("Smallest"، n، "- رقم مربع كامل:"، pow (math.ceil (math.sqrt (pow (10، n - 1)))، 2))
print ("Largest"، n، "- رقم مربع كامل:"، pow (math.ceil (math.sqrt (pow (10، n))) - 1، 2))
ن 1 = 1
print ("عدد الأرقام:"، n1)
findPerfectSquares (n1)
ن 2 = 2
print ("عدد الأرقام:"، n2)
findPerfectSquares (n2)
ن 3 = 3
print ("عدد الأرقام:" ، n3)
findPerfectSquares (n3)
ن 4 = 4
print ("عدد الأرقام:" ، n4)
findPerfectSquares (n4)

انتاج |:

عدد الأرقام: 1
أصغر مربع كامل مكون من 1 رقم: 1
أكبر مربع كامل مكون من 1 رقم: 9
عدد الأرقام: 2
أصغر مربع كامل مكون من رقمين: 16
أكبر مربع كامل مكون من رقمين: 81
عدد الأرقام: 3
أصغر مربع كامل مكون من 3 أرقام: 100
أكبر مربع كامل مكون من 3 أرقام: 961
عدد الأرقام: 4
أصغر مربع كامل مكون من 4 أرقام: 1024
أكبر مربع كامل مكون من 4 أرقام: 9801

متعلق ب: كيفية البحث عن أكبر وأصغر رقم من خلال البرمجة

برنامج JavaScript للعثور على أصغر وأكبر المربعات المثالية المكونة من N Digit

يوجد أدناه برنامج JavaScript للعثور على أصغر وأكبر المربعات الكاملة المكونة من رقم n:

// برنامج JavaScript للعثور على أصغر وأكبر
// n-digit مربعات كاملة
وظيفة findPerfectSquares (n) {
document.write ("Smallest" + n + "-digit perfect square:" + Math.pow (Math.ceil (Math.sqrt (Math.pow (10، n - 1)))، 2) + "
");
document.write ("Largest" + n + "-digit perfect square:" + Math.pow (Math.ceil (Math.sqrt (Math.pow (10، n))) - 1، 2) + "
");
}
فار ن 1 = 1 ؛
document.write ("عدد الأرقام:" + n1 + "
");
findPerfectSquares (n1) ؛
فار ن 2 = 2 ؛
document.write ("عدد الأرقام:" + n2 + "
");
findPerfectSquares (n2) ؛
فار n3 = 3 ؛
document.write ("عدد الأرقام:" + n3 + "
");
findPerfectSquares (n3) ؛
فار n4 = 4 ؛
document.write ("عدد الأرقام:" + n4 + "
");
findPerfectSquares (n4) ؛

انتاج |:

عدد الأرقام: 1
أصغر مربع كامل مكون من رقم واحد: 1
أكبر مربع كامل مكون من رقم واحد: 9
عدد الأرقام: 2
أصغر مربع كامل مكون من رقمين: 16
أكبر مربع كامل مكون من رقمين: 81
عدد الأرقام: 3
أصغر مربع كامل مكون من 3 أرقام: 100
أكبر مربع كامل مكون من 3 أرقام: 961
عدد الأرقام: 4
أصغر مربع كامل مكون من 4 أرقام: 1024
أكبر مربع كامل مكون من 4 أرقام: 9801

أصغر وأكبر مكعبات مثالية من N-Digit

عرض المشكلة

أنت تحصل على عدد صحيح ن، فأنت بحاجة إلى العثور على أصغر وأكبر عدد مكون من عدد n والذي يعد أيضًا مكعبات كاملة.

مثال 1: دع n = 2

أصغر مكعب مثالي مكون من رقمين هو 27 وأكبر مكعب مثالي مكون من رقمين هو 64.

وبالتالي ، يكون الناتج هو:

أصغر مكعب مثالي مكون من رقمين: 27

أكبر مكعب مثالي مكون من رقمين: 64

مثال 2: دع ن = 3

أصغر مكعب مثالي مكون من 3 أرقام هو 120 وأكبر مكعب مثالي مكون من 3 أرقام هو 729.

وبالتالي ، يكون الناتج هو:

أصغر مكعب مثالي مكون من 3 أرقام: 125

أكبر مكعب مثالي مكون من 3 أرقام: 729

نهج لحل المشكلة

يمكنك العثور على أصغر مكعب مثالي مكون من رقم n باستخدام الصيغة التالية:

الأسرى (cbrt (الأسرى (10 ، (ن - 1)))) ، 3)

ولإيجاد أكبر مكعب مثالي مكون من رقم n ، استخدم الصيغة التالية:

الأسرى (cbrt (الأسرى (10 ، (ن)))) - 1 ، 3)

برنامج C ++ للعثور على أصغر وأكبر مكعبات N-Digit المثالية

يوجد أدناه برنامج C ++ للعثور على أصغر وأكبر مكعبات مثالية مكونة من رقم n:

// C ++ للعثور على أصغر وأكبر
// n-digit المكعبات الكاملة
#يشمل
استخدام اسم للمحطة؛
العثور على باطل
{
cout << "أصغر" << n << "مكعب مثالي رقم:" << pow (ceil (cbrt (pow (10، (n - 1))))، 3) << endl؛
cout << "أكبر" << n << "مكعب مثالي رقم:" << (int) pow (ceil (cbrt (pow (10، (n)))) - 1، 3) << endl؛
}
انت مين()
{
int n1 = 1 ؛
cout << "عدد الأرقام:" << n1 << endl؛
findPerfectCubes (n1) ؛
int n2 = 2 ؛
cout << "عدد الأرقام:" << n2 << endl؛
findPerfectCubes (n2) ؛
int n3 = 3 ؛
cout << "عدد الأرقام:" << n3 << endl؛
findPerfectCubes (n3) ؛
int n4 = 4 ؛
cout << "عدد الأرقام:" << n4 << endl؛
findPerfectCubes (n4) ؛
العودة 0 ؛
}

انتاج |:

عدد الأرقام: 1
أصغر مكعب مثالي مكون من رقم واحد: 1
أكبر مكعب مثالي مكون من رقم واحد: 8
عدد الأرقام: 2
أصغر مكعب مثالي مكون من رقمين: 27
أكبر مكعب مثالي مكون من رقمين: 64
عدد الأرقام: 3
أصغر مكعب مثالي مكون من 3 أرقام: 125
أكبر مكعب مثالي مكون من 3 أرقام: 729
عدد الأرقام: 4
أصغر مكعب مثالي مكون من 4 أرقام: 1000
أكبر مكعب مثالي مكون من 4 أرقام: 9261

برنامج Python للعثور على أصغر وأكبر مكعبات N-Digit المثالية

يوجد أدناه برنامج Python للعثور على أصغر وأكبر مكعبات مثالية مكونة من رقم n:

# برنامج بايثون للعثور على أصغر وأكبر
# n رقم المكعبات الكاملة
استيراد الرياضيات
def findPerfectCubes (n):
print ("Smallest"، n، "- digit perfect cube:"، pow (math.ceil ((pow (10، (n - 1))) ** (1/3))، 3))
طباعة ("Largest"، n، "- رقم مكعب مثالي:"، pow (math.ceil ((pow (10، (n))) ** (1/3)) - 1، 3))
ن 1 = 1
print ("عدد الأرقام:"، n1)
findPerfectCubes (n1)
ن 2 = 2
print ("عدد الأرقام:"، n2)
findPerfectCubes (n2)
ن 3 = 3
print ("عدد الأرقام:" ، n3)
findPerfectCubes (n3)
ن 4 = 4
print ("عدد الأرقام:" ، n4)
findPerfectCubes (n4)

انتاج |:

عدد الأرقام: 1
أصغر مكعب مثالي بحجم 1: 1
أكبر مكعب مثالي بحجم 1: 8
عدد الأرقام: 2
أصغر مكعبين مثاليين: 27
أكبر مكعب مثالي مكون من رقمين: 64
عدد الأرقام: 3
أصغر مكعب مثالي مكون من 3 أرقام: 125
أكبر مكعب مثالي مكون من 3 أرقام: 729
عدد الأرقام: 4
أصغر مكعب مثالي مكون من 4 أرقام: 1000
أكبر مكعب مثالي مكون من 4 أرقام: 9261

برنامج JavaScript للعثور على أصغر وأكبر مكعبات مثالية من N-Digit

أدناه هو جافا سكريبت برنامج للعثور على أصغر وأكبر المكعبات المثالية المكونة من رقم n:

// برنامج JavaScript للعثور على أصغر وأكبر
// n-digit المكعبات الكاملة
وظيفة findPerfectCubes (n) {
document.write ("أصغر" + n + "مكعب مثالي رقم:" + Math.pow (Math.ceil (Math.cbrt (Math.pow (10، (n - 1))))، 3) + "
");
document.write ("Largest" + n + "-digit perfect cube:" + Math.pow (Math.ceil (Math.cbrt (Math.pow (10، (n)))) - 1، 3) + "
");
}
فار ن 1 = 1 ؛
document.write ("عدد الأرقام:" + n1 + "
");
findPerfectCubes (n1) ؛
فار ن 2 = 2 ؛
document.write ("عدد الأرقام:" + n2 + "
");
findPerfectCubes (n2) ؛
فار n3 = 3 ؛
document.write ("عدد الأرقام:" + n3 + "
");
findPerfectCubes (n3) ؛
فار n4 = 4 ؛
document.write ("عدد الأرقام:" + n4 + "
");
findPerfectCubes (n4) ؛

انتاج |:

عدد الأرقام: 1
أصغر مكعب مثالي مكون من رقم واحد: 1
أكبر مكعب مثالي مكون من رقم واحد: 8
عدد الأرقام: 2
أصغر مكعب مثالي مكون من رقمين: 27
أكبر مكعب مثالي مكون من رقمين: 64
عدد الأرقام: 3
أصغر مكعب مثالي مكون من 3 أرقام: 125
أكبر مكعب مثالي مكون من 3 أرقام: 729
عدد الأرقام: 4
أصغر مكعب مثالي مكون من 4 أرقام: 1000
أكبر مكعب مثالي مكون من 4 أرقام: 9261

شحذ دماغك مع تحفيز الألغاز الرياضيات

إذا كنت شخصًا يحب حل الألغاز والأحاجي الرياضية ، فأنت تقدم خدمة لعقلك! يحسن حل الألغاز والأحاجي الرياضية الذاكرة ، ويزيد من مهارات حل المشكلات ، ويمكن أيضًا أن يزيد معدل الذكاء. توفر بعض مواقع الويب الرائعة وقنوات YouTube والتطبيقات ألغاز وألعاب رياضية رائعة مجانًا.

يشاركسقسقةبريد الالكتروني
5 موارد لإثارة الدماغ لألغاز وألغاز وألعاب رياضية مجانية

إذا كنت تحب الألغاز المنطقية ، فإليك حيث يمكنك الحصول على المزيد من الألغاز والألعاب الرياضية المذهلة لشحذ ذكائك.

اقرأ التالي

مواضيع ذات صلة
  • برمجة
  • بايثون
  • جافا سكريبت
  • دروس الترميز
  • برمجة
نبذة عن الكاتب
يوفراج شاندرا (67 المقالات المنشورة)

يوفراج طالب جامعي في علوم الكمبيوتر بجامعة دلهي بالهند. إنه متحمس لتطوير الويب Full Stack. عندما لا يكتب ، فإنه يستكشف عمق التقنيات المختلفة.

المزيد من Yuvraj Chandra

اشترك في نشرتنا الإخبارية

انضم إلى النشرة الإخبارية لدينا للحصول على نصائح تقنية ومراجعات وكتب إلكترونية مجانية وصفقات حصرية!

انقر هنا للاشتراك